autoform是基于静力隐式算法
dynaform式动力显式算法
从算法的角度来说 动力显示应该有优势 具体优劣可以看看相关介绍
看到好像autoform更易于操作 和使用 没有用过 不很清楚
但autoform有onestep模块求解迅速. 可用于零件快速设计 成形性分析.
autoform可参看下文,dynaform simwe主页技术文章中有介绍 可去查阅.
当代汽车和现代模具设计制造技术都表明,汽车覆盖件模具的设计制造离不开有效的板成形模拟软件。世界上大的汽车集团,其车身开发与模具制造都要借助于一种或几种板成形模拟软件来提高其成功率和确保模具制造周期,国际上的软件主要有美国eta公司的Dynaform,法国ESI集团的PAM系列软件,德国AutoForm工程股份有限公司的AutoForm,国内有吉林金网格模具工程研究中心的KMAS软件,北航的SheetForm,华中科技大学的Vform等。本文着重探讨AutoForm及其应用。
1. 概述:AutoForm与板料成形技术
AutoForm工程有限公司包括瑞士研发与全球市场中心和德国工业应用与技术支持中心,其研发和应用的阶段主要有:1991年实现自适应精化(adaptive refinement)网格;1992年采用隐式算法(implicit code)并与1993年开发出板成形模拟分析的专用软件;1994年实现对CAD数据的自动网格划分;1995年开始工业应用;1996年实现对CAD数据的自动倒园(automatic filleting);1997年采用One-step(一步成形)代码实现工艺补充面(addendum)的自动设计;1998年实现压料面(binder)的自动生成;2000年实现快速交互式模具设计。它是专门针对汽车工业和金属成形工业中的板料成形而开发和优化的,用于优化工艺方案和进行复杂型面的模具设计,约90%的全球汽车制造商和100多家全球汽车模具制造商和冲压件供应商都使用它来进行产品开发、工艺规划和模具研发,其目标是解决“零件可制造性(part feasibility)、模具设计(die design)、可视化调试(virtual tryout)”。它将来自世界范围内的许多汽车制造商和供应商的广泛的诀窍和经验融入其中,并采取用户需求驱动的开发策略,以保证提供最新的技术。
AutoForm的特点:1)它提供从产品的概念设计直至最后的模具设计的一个完整的解决方案,其主要模块有User-Interface(用户界面)、Automesher(自动网格划分)、Onestep(一步成形)、DieDesigner(模面设计)、Incremental(增量求解)、Trim(切边)、Hydro(液压成形),支持Windows和Unix操作系统。2)特别适合于复杂的深拉延和拉伸成形模的设计,冲压工艺和模面设计的验证,成形参数的优化,材料与润滑剂消耗的最小化,新板料(如拼焊板、复合板)的评估和优化。3)快速易用、有效、鲁棒(robust)和可靠:最新的隐式增量有限元迭代求解技术不需人工加速模拟过程,与显式算法相比能在更短的时间里得出结果;其增量算法比反向算法有更加精确的结果,且使在FLC-失效分析里非常重要的非线性应变路径变得可行。即使是大型复杂制件,经工业实践证实是可行和可靠的。4)AutoForm带来的竞争优势:因能更快完成求解、友好的用户界面和易于上手、对复杂的工程应用也有可靠的结果等,AutoForm能直接由设计师来完成模拟,不需要大的硬件投资及资深模拟分析专家,其高质量的结果亦能很快用来评估,在缩短产品和模具的开发验证时间、降低产品开发和模具成本、提高产品质量上效果显著,对冲压成形的评估提供了量的概念,给企业带来明显的竞争优势和市场机遇。
2. AutoForm的前处理与后处理
从数据输入到后处理结果的输出,AutoForm融合了一个有效开发环境所需的所有模块。其图形用户界面(GUI)经过特殊裁剪更适合于板成形过程,从前处理到后处理的全过程与CAD数据的自动集成,网格的自动自适应划分;所有的技术工艺参数都已设置且易变更,设置的过程易于理解且符合工程实际。
AutoForm软件与其它CAD软件的数据接口可以通过IGES、VDA等数据标准转换,并实现了与CATIA数据的直接转换。其偏移(offset)功能能很快地从凸模(或凹模)生成凹模(或凸模);能很方便地定义拉延筋和修边轮廓等功能曲线;复杂形状的落料件和组合毛坯件的自动网格划分;对称件可以1/2描述;能直接地将落料轮廓、拉延筋线和修边轮廓从CAD带入模拟中。这些都大大简化了CAD数据的输入。
其网格生成器(automesher模块),网格自适应功能非常强,可以将IGES和VDA曲面转化成AutoForm能够识别的文件格式,在定义网格大小、最大表面误差值后能很快完成高度复杂自由几何曲面的自动网格划分。对CAD数据进行尖角圆整(自动倒圆),即在划分网格后检查工具几何模型的自由边界、棱边和内凹面,无须人工干预及修改即可对棱边倒圆,在尖角处自动产生指定半径倒圆,效率高。由于软件接触算法的特点,对工具采用曲面片(facet)离散,对毛坯采用网格单元剖分,自动检查孔、尖角和根切截面,因而可大量节省有限元模型前处理的时间。AutoForm能根据计算的需要自动重新定义网格,生成成形件的适应性有限元网格,采用的标准是几何和应变梯度。AutoForm的自适应网格划分产生非常精确的几何分辨率和准确的结果。
AutoForm对模拟结果融合了许多有效和宜人的解释:1)可以实时地观测计算结果,以便在计算初始阶段即可发现模型设置方面的错误,避免浪费时间。2)可观测应力、应变和厚度分布、材料流动状况,可计算工具应力、冲压力,可实现材料标记、法向位移的标识,可生成对破裂、起皱和回弹失效进行判定的成形质量图以及成形极限图(在成形极限图上可标识变形临界区域、标识某一单元的应变路径)。3)还可进行一些特殊评估:几何体和结果的截面显示;FLC失效分析;状态改动后的后期显示;回弹评估用的实际模型定位。
图形显示支持OpenGL图形标准,能真实上色,能显示几何体的阴影图及伴有选定结果变量后的彩色分布图,动画能力和阴影图的实时旋转使后处理变得更容易并使用户分析结果更方便快捷,弹击鼠标可显示零件的有关数据,数据结果的输出等。
动态剪辑(dynamic clipping)和动态截面(dynamic section):用户界面的动态剪辑和动态截面支持板料和模具接触面间的准确评估,而且模具闭合时板料的成形状态能很方便地观看和理解,这利于确认模具何形状的任何改变后材料的流动和板料成形情况。
滑动线和冲击线(skid and impact lines)的评价:通过在模具表面上定义滑动线和冲击线来评估它们在板料上的运动情形及其对制件质量的影响,并能自动确定板料和这些线的接触情形以及接触区域内材料的流动轨迹。
3. Autoform-DieDesignerTM :快速模面设计及其优化的模块
传统的CAD系统采用人工方法来生成压料面和工艺补充面,费时费事。DieDesigner是AutoForm的一个有重要功能模块,它是和BMW和Audi联合开发并得到来自DaimlerChrysler和GM的技术反馈,是专为汽车模具设计师、工艺工程师和模具制作人员而开发的,可以快速实现基于用户控制的压料面和工艺补充面的参数化设计和修改。由于很快自动生成压料面和工艺补充面的一次概念设计,并显示出整个模面形状,模具工程师可在短时间内生成若干个拉延方案并进行其模拟,以判定最优设计,从而显著减少模具开发时间;同时,考虑压料面和工艺补充面,工艺工程师也能大大增加零件可制造性的评估精度。它包含了许多特别适合汽车工业的专用特征。
从零件的CAD表面数据(IGES或VDA)开始,首先用AutoForm-Automesher对零件进行自动网格划分,自动填充零件几何体中的孔洞和间隙,并通过几何图形或交互式地改变表面轮廓,用户可以对制件和工艺方案(run-off)进行便捷的修改。基于用户指定的半径或变半径,零件的尖边缘自动倒圆,对零件的这种修改有利于改进拉延效果,对提高冲压可成形性通常也是极为重要的。
自动旋转制件几何体形成拉延方向(automatic tipping):可根据拉延深度优选最好的拉延冲压方向,显示冲压质量差(backdraft)和危险的区域,避免制件无法冲压(undercut)和平衡变形,这对确定优化的冲压方向角(Tip angle)是重要的。转换矩阵可以通过 IGES或VDAFS将冲压方向转换输入CAD,优选过程简便、直观。
快速自动生成压料面(binder)和工艺补充面(addendum):精确的曲面轮廓方法与模具工程实际相结合根据制件数据生成压料面,并且允许用户修改局部表面轮廓或按准确的尺寸设计。对于产品设计师,这使得在产品开发的早期就可以进行增量模拟,从而增加了产品成形性评估的准确度;对于模具设计师,它是产生初始压料面的一个有效模块,生成的压料面可以还通过 IGES或VDAFS转换输入CAD做进一步修改用。在此基础上可以实现用户控制的参数化的工艺补充部分自动生成。整个过程充分体现出用户控制、全自动和全参数化的特征。用户可以通过修改工艺补充面轮廓和相应的模面细节,如生成的拉延包(drawbar)太高导致过度拉长和破裂等,可通过降低拉延坎高度、加大圆角半径,来达到良好的拉延成形效果。基于轮廓的压料面设计,使用2D模拟预优化工艺补充面轮廓,拉延深度显示等,这对优化初始凸模接触(initial punch contact)是很重要的。
与AutoForm-Onestep,AutoForm-Incremental和AutoForm-Optimizer的完全集成,在模面设计中生成的压料面、工艺补充面和制件几何体三部分,能很容易地转换进入并完全自动地生成相应的模具并设置出工艺步骤,从而立即由AutoForm-Onestep和AutoForm-Incremental模块进行试模。由于全参数化,用户的修改可以迅速完成,且AutoForm-OneStep和AutoForm-Incremental进行虚拟试模的模具可自动更新。基于2D模拟,模具不同区域和不同截面上的临界应变(critical strains)和滑移/冲击线的评估,这对模具设计过程早期评估工艺补充面特别有用。
为进一步改进模面设计,DieDesigner包含一个完全集成的模块AutoForm-Optimizer(优化模块),它无缝集成于AutoForm-User-Interface,可与AutoForm-OneStep和AutoForm-Incremental同步使用;它基于进化(Evolution)策略,通过多次模拟能优化模面和冲压过程方案,从而判定和确认优化的模面形状(制件和工艺补充面的圆角半径,拉延包高度,凸模拔模角,储料包(over-crown)等,拉延半径、拉延筋)和冲压过程参数(压料力,拉延筋强度和等效拉延筋阻力,坯料的轮廓,模具型面几何参数等,摩擦条件和润滑,平衡块(spacer)和工艺切口(relief cuts)等工艺条件的设置等)。如对某行李箱盖(deck-lid),目标是在行李箱盖内部区域中获得足够的伸长变形,使用AutoForm-Optimizer进行优化的对象是拉延包高度和拉延筋阻力强度,通过多次反复试模,就可以使大面积的不充分伸长变形优化为充分伸长变形。
DieDesigner的特点:1)能实现增强几何成形性的评价,不同模具概念设计的快速生成和优化。2)实有直觉的模面生成,易用;全参数化,快捷。3)与Onestep和Incremental求解的完全集成。4)完整:自动变半径倒园,优化的拔模角,自动充填表孔洞/边界区域,自动和交互式的压料面生成,通过2D模拟完成工艺补充轮廓的前优化处理,自动和交互式的工艺补充部分生成。
4. AutoformTM板成形软件:一个完整的解决方案
4.1 AutoForm-Onestep:评估零件的可制造性
Onestep采用仅基于产品的一步成形算法(Onestep Codes),目标是对产品进行反复优化(Iterative Product Optimization)的多次模拟。首先输入零件的CAD数据,并进行孔洞和间隙填充以及棱边的倒圆处理,进行一些工艺参数设置,可很快得到最小毛坯形状、裂纹和皱纹等成形缺陷,FLD,反映伸长量和厚度变化等质量目标的成形结果。它讨论产品可制造性、可以实现毛坯反算,并对零件的可制造性快速评价。
4.2 AutoForm-Onestep/Binder:拉延件的成形性快速评估
它采用基于拉延件的一步成形算法(One-Step Codes with Binder/Addendum),目标是对模具和工艺方案进行反复优化(Iterative Tool and Process Optimization)的多次模拟,讨论模具的概念设计(Tooling Concepts)。即为增加成形性评价结果的精确性,可继续输入凸模入口线(Punch-opening line)和翻边线,并考虑生成一个模面,通过考虑工艺补充部分的重要的限流效果(Restraining Effect),来增加结果精度。而且通过生成整副模具和完成增量模拟所需的输入,就可从Onestep过渡到Incremental来更全面检查拉延成形障碍(breakdown)。它可解决在产品设计阶段的早期成形性评价和不同模具概念设计方案的评估;易用,快捷,准确。
4.3 Incremental与可视化调试
AutoForm-Incremental采用基于拉延件的增量算法(Incremental Codes),目标是对模具和工艺方案进行反复优化(Iterative Tool and Process Optimization)的多次模拟或为了确认模具和工艺方案而进行的有选择性的模拟(Selective Simulations for Tool and Process Validation),全面讨论模具和工艺设计。
它使用许多现代模拟技术,如应用新的隐式有限元算法保证求解的迭代收敛;弯曲效应的考虑利于求解回弹;采用自适应网格、时阶控制、复杂工具描述的强有力接触算法、数值控制参数的自动决定和使用精确的全量拉格朗日理论(total-Lagrange theory)等保证求解快而且准确。采用新的切割算法(New Cutting Algorithm)来增加精度,可以确定任意一个非Z方向为修边线的工作方向,这就允许了斜楔修边和冲孔操作的模拟;它也可以在冲切线周围对板料网格再划分,所以非常小的孔也可以精确切出。此外也可以算出考虑板厚、材料硬化和修切线长度后所需要的冲裁力。
它同时融于了许多工程应用技术,如务实的工艺阶段转化,压料圈压紧后工件状态的决定,基于前述结果的后续运算(继续开始),成形过程中的工艺切口,切边操作,最终制件的回弹计算;可用任意数值的力和位移控制工具,工具的摩擦,采用位置相关(position-dependent)和压边力适时变化的压料圈,考虑了拉延筋和平衡块(spacers)的模具模型,考虑了加工硬化和应变率效应(strain-rate effect)的各向异性材料模型;等效拉延筋阻力模型可以考虑板料经过拉延筋时的弯曲、反弯曲效应,拉延筋的几何模型考虑了其压入深度;具有包括美国、日本及欧洲的上百种材料的广泛的材料数据库,该软件的材料参数库开放性强,可以自行建立适应用户需要的参数库。
它可以模拟整个冲压过程:板料的重力效应(gravity effect,这对由于板料重量而下垂或变形的大型零件是非常重要的),压料圈成形(binder wrap),拉延成形。压料面和凸模的几何形状有时会在拉延的初始阶段诱发大型皱纹的扩展,AutoForm可模拟压料圈下的皱纹以及拉延过程中这些皱纹的变化,虽然这些皱纹一般都随着拉延的进行而消失。而且,在定义毛坯材料及性质的同时,可以定义工艺切口和工艺孔。在模拟多步冲压成形时,也可以加入切边或冲孔工序,以及确定整形前的切边线。
Autoform-Incremental(增量求解):1)可解决:模具设计的快速调试;确定工艺参数和工艺过程局部窗口;模具和工艺优化。2)易用,快捷,对大多数零件得到结果不超过3小时。3)准确:预测起皱、破裂、表面质量、冲击和滑移线,小的几何细节,最小元素尺寸小于1mm。4)详细的表面成形质量,如破裂、变薄、伸长、起皱等,成形极限图FLD、材料流入量、滑移和冲击线、成形力等。5)完整:重力、压边、拉延、切边、整形、回弹,全工序成形。6)拼合板和复合板的模拟:可以定义一个不同材料和/或厚度的裁剪拼合毛坯作为AutoForm-Incremental模拟的板坯,板坯上的焊缝也可以相互交叉,这在开发新型汽车中以优化重量和性能是非常重要的。7)可按用户指定的有限元网格自动映射Autoform模拟结果,供碰撞(crash)、结构(structural)、疲劳(fatigue)和振动(vibration)等分析用。
5. 结论
我厂从2001年5月开始探讨AutoForm在解决汽车覆盖件模具制造中的应用,经过各个阶段的重点攻关,通过研究、引进、消化、吸收和应用,实现了:
1. 对汽车冲压零件产品的可冲压成形性进行分析,判定零件冲压成形的难点和关键区域,进而实现冲压工艺和汽车零件设计的互动;
2. 对汽车冲压零件产品实现毛坯展开计算;
3. 对模具和工艺方案的确认进行有选择性和针对性的模拟分析,给模具调试提供量化的分析判断数据,对可进行的模具调试方案进行判别,并对可行的调试方案提供具体技术参数;
4. 对模具和工艺方案进行反复优化的多次模拟,用先于现场模具调试的模具CAE技术,对拉延模具设计的可行性和可靠性进行量化的分析和判断,对有欠缺的设计提出优化改进方案。
为实现上述阶段性目标,按计划进行了各个阶段的重点攻关:
1. 前期调研、考察与论证,目标是进行汽车覆盖件板成形数值模拟的关键技术及其处理方法的研究;
2. 技术引进方案的比较、分析和论证与判定,目标是进行汽车覆盖件板成形数值模拟工程应用相关技术的研究,进行工程试应用,并确定应用领域和技术难点;
3. 解决模具调试问题,提供调试方案,难点是数值分析的可用手段和模拟精度,即软件功能的研发与应用,冲压材料的性能参数分析与总结,现场实际冲压工艺条件的分析与总结,最终实现与现场一样多或更多的可用试模手段和达到较高的工程化应用精度;
4. 解决拉延模具设计的可行性和可靠性问题,提供优化改进方案,难点是数值模拟分析的精度和速度,以及优化改进方案的提出,提高工程化应用水平;
5. 模具设计前的工程应用,对产品的可冲压成形性的分析,成形模具的零件毛坯展开计算。

2007年12月21日星期五
模具企业数字制造技术的现状与发展
现代工业生产中,60%~90%的工业产品需要使用模具,模具工业已经成为工业发展的基础。根据国际生产技术协会的预测,21世纪机械制造工业零件粗加工的75%,精加工的50%都需要通过模具来完成,其中汽车、电器、通信、石化和建筑等行业最为突出。
模具作为一种高附加值的技术密集产品,它的技术水平已经成为衡量一个国家制造业水平的重要评价指标。早在CAD/CAM技术还处于发展的初期,CAD/CAM就被模具制造业竞相吸收应用。目前国内的模具制造企业约20000家,并且以每年10%~15%的速度高速增长。在约400亿元的模具工业产值中,自产自用模具的企业约占2/3,50%~60%的企业较好地应用CAD/CAE/CAM/PDM技术。模具相关的CAD/CAE/CAM技术一直是研究开发、教育培训和推广应用的热点。
一、模具CAD/CAM系统专用化程度不断提高
随着模具工业的飞速发展以及CAD/CAM技术的重要性被模具界的广泛认可,近年来CAD/CAM开发商投入了很大的人力和物力,将通用CAD/CAM系统改造为模具行业专用的CAD/CAM系统,针对各类模具的特点,推出了宜人化、集成化和智能化的专用系统,受到了广大模具工作者的好评。例如以色列Cimatron公司推出的Quick系列产品,能在统一的系列环境下,使用统一的数据库,完成产品设计,生成三维实体模型,在此基础上进行自动分类,生成凸、凹模并完成模具的完整结构设计,能方便地对凸、凹模进行自动NC加工。又如英国DELCAM公司推出的PowerSHAPE系统,包括PSMoldmaker模块,是面向模具制造的模具总装设计专家系统,可自动为复杂注塑模、吹塑模创建模具结构及抽芯机构、自动产生分模面,加工信息被自动封装,并可直接输出到PowerMILL模块,自动产生加工程序。日本造船信息系统株式会社的三维CAD/CAM系统SpaceE中也增加了专用于注塑模的设计模块。
日本UNISYS株式会社推出的专用于塑料模设计和制造系统的CADCEUS也颇具特色,该系统综合了塑料产品设计从产品形状设计、模具设计到模具生产所需要的全部功能,重点放在三维设计与二维视图的关联,体现了宜人化和集成化方面的技术进步。
二、面向模具企业的CAD/CAE/CAM技术的系统集成方案
随着模具工业的科技进步和国际竞争的日益激烈,模具业对CAD/CAM系统的要求也从单纯的建模工具变为要求支持从设计、分析、管理和加工全过程的产品信息管理集成化系统。近几年来,有不少研究单位和公司都开发了面向模具企业的CAD/CAE/CAM系统集成方案,表现出较高的实用水平。如上海交通大学国家模具工程中心在数字化制造、系统集成、反向工程、快速原型/模具以及计算机辅助应用技术等方面已形成了全方位解决方案的能力,能够提供模具开发与工程服务的业务,全面地提高模具企业的水平和产品质量。又如浙江大学旭日科技开发公司,能为企业提供产品设计、三维造型与NC编程、逆向工程、三坐标测量、模具设计与分析、技术培训以及模具CAD/CAE/CAM技术开发的全方位技术支持。北航海尔软件有限公司推出的CAXA品牌系列CAD/CAE/CAM软件也能够为用户提供有关模具工程的全方位解决方案。
值得注意的是,国际著名的CAD/CAM技术集团正在努力把数字化分析产品集成到CAD/CAM平台中。由于数字化分析产品广泛应用于航空航天、汽车、电子、医疗设备和重型机械等领域,因此仿真软件主要面向这些增长的CAE市场。根据全球领先的产品全生命周期管理(PLM)市场的资深分析公司Daratech的预测,到2007年,CAE市场的年增长率将保持在10.3%。 制造商要求通过减少物理样机,提高产品质量来降低成本并加速产品上市,这种需求在模具制造业中尤为突出。因此在设计过程中加强前期的分析仿真,将有助于缩减对物理样机的需求量,并提高数字化设计的灵活性。例如,将NXNastran集成到EDSCAE产品软件包中,将进一步加强分析驱动设计技术的重要地位,有助于用户不断开发新产品,同时降低成本,缩短将产品推向市场的时间。
另一个例子是,达索集团已经将MSC公司的NastranCAE技术产品,集成到CATIA系统中,并获得了日本丰田公司的青睐。
因此,在模具CAD/CAM技术中集成数字化分析技术,获得完善的CAD/CAE/CAM解决方案,是目前的一个重要发展方向。
模具作为一种高附加值的技术密集产品,它的技术水平已经成为衡量一个国家制造业水平的重要评价指标。早在CAD/CAM技术还处于发展的初期,CAD/CAM就被模具制造业竞相吸收应用。目前国内的模具制造企业约20000家,并且以每年10%~15%的速度高速增长。在约400亿元的模具工业产值中,自产自用模具的企业约占2/3,50%~60%的企业较好地应用CAD/CAE/CAM/PDM技术。模具相关的CAD/CAE/CAM技术一直是研究开发、教育培训和推广应用的热点。
一、模具CAD/CAM系统专用化程度不断提高
随着模具工业的飞速发展以及CAD/CAM技术的重要性被模具界的广泛认可,近年来CAD/CAM开发商投入了很大的人力和物力,将通用CAD/CAM系统改造为模具行业专用的CAD/CAM系统,针对各类模具的特点,推出了宜人化、集成化和智能化的专用系统,受到了广大模具工作者的好评。例如以色列Cimatron公司推出的Quick系列产品,能在统一的系列环境下,使用统一的数据库,完成产品设计,生成三维实体模型,在此基础上进行自动分类,生成凸、凹模并完成模具的完整结构设计,能方便地对凸、凹模进行自动NC加工。又如英国DELCAM公司推出的PowerSHAPE系统,包括PSMoldmaker模块,是面向模具制造的模具总装设计专家系统,可自动为复杂注塑模、吹塑模创建模具结构及抽芯机构、自动产生分模面,加工信息被自动封装,并可直接输出到PowerMILL模块,自动产生加工程序。日本造船信息系统株式会社的三维CAD/CAM系统SpaceE中也增加了专用于注塑模的设计模块。
日本UNISYS株式会社推出的专用于塑料模设计和制造系统的CADCEUS也颇具特色,该系统综合了塑料产品设计从产品形状设计、模具设计到模具生产所需要的全部功能,重点放在三维设计与二维视图的关联,体现了宜人化和集成化方面的技术进步。
二、面向模具企业的CAD/CAE/CAM技术的系统集成方案
随着模具工业的科技进步和国际竞争的日益激烈,模具业对CAD/CAM系统的要求也从单纯的建模工具变为要求支持从设计、分析、管理和加工全过程的产品信息管理集成化系统。近几年来,有不少研究单位和公司都开发了面向模具企业的CAD/CAE/CAM系统集成方案,表现出较高的实用水平。如上海交通大学国家模具工程中心在数字化制造、系统集成、反向工程、快速原型/模具以及计算机辅助应用技术等方面已形成了全方位解决方案的能力,能够提供模具开发与工程服务的业务,全面地提高模具企业的水平和产品质量。又如浙江大学旭日科技开发公司,能为企业提供产品设计、三维造型与NC编程、逆向工程、三坐标测量、模具设计与分析、技术培训以及模具CAD/CAE/CAM技术开发的全方位技术支持。北航海尔软件有限公司推出的CAXA品牌系列CAD/CAE/CAM软件也能够为用户提供有关模具工程的全方位解决方案。
值得注意的是,国际著名的CAD/CAM技术集团正在努力把数字化分析产品集成到CAD/CAM平台中。由于数字化分析产品广泛应用于航空航天、汽车、电子、医疗设备和重型机械等领域,因此仿真软件主要面向这些增长的CAE市场。根据全球领先的产品全生命周期管理(PLM)市场的资深分析公司Daratech的预测,到2007年,CAE市场的年增长率将保持在10.3%。 制造商要求通过减少物理样机,提高产品质量来降低成本并加速产品上市,这种需求在模具制造业中尤为突出。因此在设计过程中加强前期的分析仿真,将有助于缩减对物理样机的需求量,并提高数字化设计的灵活性。例如,将NXNastran集成到EDSCAE产品软件包中,将进一步加强分析驱动设计技术的重要地位,有助于用户不断开发新产品,同时降低成本,缩短将产品推向市场的时间。
另一个例子是,达索集团已经将MSC公司的NastranCAE技术产品,集成到CATIA系统中,并获得了日本丰田公司的青睐。
因此,在模具CAD/CAM技术中集成数字化分析技术,获得完善的CAD/CAE/CAM解决方案,是目前的一个重要发展方向。
CAD/CAE在航天领域中的应用概述2007/12/12/09:52
计算机辅助造型以及有限元法是随着计算机技术的应用而发展起来的一种先进的CAD/CAE技术,广泛应用于各个领域中的科学计算、设计、分析中,成功的解决了许多复杂的设计和分析问题,已成为工程设计和分析中的重要工具。
此次设计中包含了某航天器零件的造型及薄板零件的压力成型分析,具有工程上的实际意义。在三维设计中,设计了一个尾喷管,一个舵,还有一个机翼,其中尾喷管由四部分组成,包括内部的支撑部分,和外部的蒙皮部分。舵和机翼都是由两个以上的蒙皮表面构成。在有限元分析中,包括金属薄板的弹塑性分析,以及舵面的弹塑性分析, 其中还对薄板进行了超塑性分析。
一、引言
为了满足航天产品多品种,小批量研制生产的需要,采用计算机辅助设计制造,实现并行工程,敏捷制造,柔性生产,成为加快我国航天制造技术的发展的有效方法。
传统的航天零件产品设计、模具设计及加工都是根据二维工程图样来完成的,加工出的产品数据精度不高,往往要不断的修改产品设计,不断的修改模具,所以,它的研发周长、成本高;采用最新的CAD/CAE/CAM——Pro/Engineer软件来实现三维设计,可以大大缩短产品研发周期、模具设计周期和加工周期,提高了产品设计的准确性,大大降低产品开发、模具设计成本。由于其功能强大,模块众多,使用者要具备较高的操作技巧和较丰富的应用经验才能熟练地进行建模。这对于普通的设计人员而言,使用Pro/E提供的实体建模模块进行3D造型设计并非易事,需要设计人员花大量的时问和精力来熟悉Pro/E的建模技术和掌握一定的技巧。
在竞争激烈的市场环境中,为取得竞争优势,企业迫切需要能够迅速开发出高质量、低成本的产品,并迅速抢占市场。因此企业界迫切需要高技术、高速度、低成本的设计方法。随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法,有限元在产品设计和研制中所显示出的无可伦比的优越性,使其成为企业在市场竞争中制胜的一个重要工具。
1.1 国内本领域的现状
目前在我国计算机辅助设计(CAD),计算机辅助工程(CAE)已经得到了广泛的应用,在大多数的大型制造企业已经相当的成熟。如果让我们调查一下国内企业中CAD的应用,会得出如下结论,很多所谓CAD应用很好的企业,也只是做到用手工出图转变为计算机出图的现状,当然计算机出图是有很多优点的,漂亮、规范、修改容易、存档方便等。但是如果我们只是停留在这个阶段,就失去了CAD的作用,因为CAD是辅助设计,不是辅助绘图。既然是设计就不但想到产品的机械模型,还应想到产品的结构分析、运动机构分析和生产加工处理等,只有这样才能真正发挥CAD的作用。如果真正做到这一点,单凭二维设计是不够的,虽然传统的制图方法是通过二维视图来描述三维实体,但这种描述做不到进一步的结构分析、运动机构分析和数控加工,不能真正做到生产的自动化,更有甚者,二维视图的描述经常出现二意性和理解错误,因为人们只是按着一些规定在想象三维的模样,限于这种描述方法的缺陷,必须找到更先进的、更合理的三维设计手段,使CAD、CAM、CAE以及PDM容为一体。当然这个目标要有一个过程,但现在我们必须明确。
1.2 主要内容
此次设计中包含了某航天器零件的造型及薄板零件的压力成型分析,具有工程上的实际意义。介绍了建模的几种方法和理论,以及有限元分析的基本理论。在三维设计中,设计了一个尾喷管,一个舵,还有一个机翼,其中尾喷管由四部分组成,包括内部的支撑部分,和外部的蒙皮部分。舵和机翼都是由两个以上的蒙皮表面构成。在有限元分析中,包括金属薄板的弹塑性分析,以及舵面的弹塑性分析, 其中还对薄板进行了超塑性分析。
二、某航天器零件的CAD造型与有限元分析
2.1 Pro/E软件简介
Pro/E软件抛弃传统CAD 软件中的线框和表面模型而直接鉴于3D 实体。使设计环境完全从2D或2D与3D混合状态上升为纯3D 模式,在此最直观的3D 的设计环境中,设计者能更好的捕捉自己的设计意图和激发设计灵感。
Pro/E 的3D 实体鉴于特征造型技术。在Pro/E 中,所面向的对象包括几何特征、非几何特征、零件模型、装配模型、模具模型、加工模型等等,设计人员通过对这些对象所具有的内在属性、存在方式和存在状态的准确把握来得到理想中的模型。
Pro/E中所有的对象都是建立在单一数据库中。并且此数据库是唯一的、完整的,因而保证了在Pro/E中进行的任何设计也都是全相关的。在整个设计过程中的任何一处发生参数改动,可以反应到整个设计过程中的相关环节上。设计师可以依靠此功能完全抛弃传统的工作方法,实现零件设计、模具设计、装配设计、加工设计等过程同时进行。
Pro/E的3D 特征实体是全参数化的,具有自适应性和智能性。通过完备而准确的参数和资料来驱动实体,产品模型的每一个设计尺寸都对应一个参数,设计人员可以通过命令或者关系式的形式来建立各参数之间的关系,以得到所要求设计的模型。
2.2 某航天器零件的CAD造型
在实体造型的过程中,要根据二维图纸上的尺寸来进行设计,有一些复杂曲线在pro/E中要灵活对待,也许不同的人对设计同一个零件要花费的时间会相差很大,这就是在绘制图形的时候所用到的方法不同而导致的。比如一个不同截面的实体用可变截面扫描的方法会最省时间,再比如一个简单的立方体可以用扫描的方法,也可以用拉伸的方法,一块薄板周围有一些不同角度的翘板,考虑是在标准模式下造型还是在板金模式下造型。
2.3 Marc软件简介
此次讨论就是依据某航天器几个零件的二维图纸在Pro/E软件环境中进行三维造型设计,造型完毕后利用MSC/Marc有限元分析软件对零件的成型过程进行模拟分析,初步了解零件在加工之前的应变过程及状态,以及零件的受力、受热情况,提供一些零件的重要性能参数。
Msc.Marc/Mentat是国际上通用最先进非线性有限元软件,它是MSC.Software coorperation(简称MSC)公司的产品。MSC.Mentat是新一代非线性有限元分析的前后处理图形交互界面。前者严密整合MSC.Marc和MSC.Mentat成为解决复杂工程问题,完成学术研究的高级通用有限元软件。
2.3.1 MSC.Mentat
MSC.Mentat是新一代非线形有限元分析的前后处理交互界面,与MSC.Marc求解器无缝连接。它具有以ACIS为内核的一流实体造型功能;全自动二维三角形和四边形,三维四面体和六面体网格自动划分建模能力;直观灵活的多种材料模型定义和边界条件的定义功能;分析过程控制定义和递交分析,自动检查分析模型完整性的功能;实时监控分析能力;方便的可视化处理计算结果能力;先进的光照,渲染,动画和电影制作等图形功能并可直接访问常用的CAD/CAE系统,如:ACIS,AutoCAD,C-MOLD,IGES,MSC.Nastran, MSC.Patran IDEAS,VDAFS,STL等等。
2.3.2 MSC.Marc
MSC.Marc是功能齐全的高级非线性有限元软件的求解器,它体现了30多年来有限元分析的理论方法和软件的完美结合。他具有极强的结构分析没能力。可以处理各种线性和非线性结构分析。它提供了丰富的机构单元,连接单元和特殊单元的单元库。MSC,Marc的机构分析材料库提供了模拟金属,非金属,聚合物,岩土,复合材料等多种线性和非线性问题的求解技术。为了进一步提高计算精度和分析效率,MSC.Marc软件提供了多种功能强大的加载步长自适应控制技术,自动确定分析加载步长。MSC.Marc卓越的网格自适应技术,以多种误差准则自动调节网格疏密,即保证了计算精度,同时也使非线性分析的计算效率大大提高。此外,MSC.Marc支持全自动网格重划,用以纠正过度变形产生的网格畸变,确保大变形分析的继续进行。
计算机辅助造型以及有限元法是随着计算机技术的应用而发展起来的一种先进的CAD/CAE技术,广泛应用于各个领域中的科学计算、设计、分析中,成功的解决了许多复杂的设计和分析问题,已成为工程设计和分析中的重要工具。
此次设计中包含了某航天器零件的造型及薄板零件的压力成型分析,具有工程上的实际意义。在三维设计中,设计了一个尾喷管,一个舵,还有一个机翼,其中尾喷管由四部分组成,包括内部的支撑部分,和外部的蒙皮部分。舵和机翼都是由两个以上的蒙皮表面构成。在有限元分析中,包括金属薄板的弹塑性分析,以及舵面的弹塑性分析, 其中还对薄板进行了超塑性分析。
2.4 有限元分析在工程上的应用
目前,有限元法在机械工程上的应用主要有以下几个方面:
静力学分析:这是对二维或三维的机械结构承载后的应力、应变和变形分析,是有限元法在机械工程中最基本、最常用的分析类型。当作用在结构上的载荷不随时间变化或随时何的变化十分缓慢,应进行静力学分析。
模态分析:这是动力学分析的一种,用于研究结构的固有频率和自振型式等振动特性。进行这种分析时所施加的载荷只能是位移载荷和预应力载荷。
谐响应分析和瞬态动力学分析:这两类分析也属动力学分析,用于研究结构对周期载荷和非周期载荷的动态响应。
热应力分析:这类分析用于研究、结构的工作温度不等于安装温度时,或工作时结构内部存在温度分布时,结构内部的温度应力。
接触分析:这是一种状态非线性分析,用于分析2个结构物发生接触时的接触面状态、法向力等。由于机械结构中结构与结构间力的传递均是通过接触来实现的,所以有限元法在机械结构中的应用很多都是接触分析。但是,以前受计算能力的制约,接触分析应用的较少。
屈曲分析:这是一种几何非线性分析,用于确定结构开始变得不稳定时的临界载荷和屈曲模态形状,例如压杆稳定性问题。
在竞争激烈的市场环境中,为取得竞争优势,企业迫切需要能够迅速开发出高质量、低成本的产品,并迅速抢占市场。因此企业界迫切需要高技术、高速度、低成本的设计方法。随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法,有限元在产品设计和研制中所显示出的无可伦比的优越性,使其成为企业在市场竞争中制胜的一个重要工具。
2.5 有限元法分析的基本步骤
物体离散化。将分析的对象离散为有限个单元,单元的数量根据需要和计算精度而定。一般情况下,单元划分越细则描述变形情况越精确,越接近实际变形,但计算量越大。
单元特性分析。首先进行位移模式选择。有限元法通常采用位移法,因此应先选择合理的位移模式(位移函数) 。然后分析单元的力学性质。根据单元的材料性质、形状、尺寸、节点数目、位置及其含义,找出单元节点力和节点位移的关系式,亦即导出单元刚度矩阵,这是分析中的关键一步。最后计算等效节点力。将单元边界上的表面力、体积力或集中力等效地转移到节点上,也就是用等效的节点力来代替所有作用在单元上的力。
单元组集。利用结构力的平衡条件和边界条件把各个单元按原来的结构重新联结起来,形成整体刚度矩阵。
求解未知节点位移。解有限元方程求出节点位移,然后根据节点位移求出所有的未知量。归根到底,有限元法是求解常,偏微分方程的一种方法。理论上讲,凡能够归纳为求解微分方程的工程问题都可以用有限元法来解决。因此有限元法可以进行结构、热、电磁、流体、声学等分析。
本次讨论主要进行弹塑性分析。弹塑性是最常见,被研究得最透彻的材料非线性行为。采用屈服面,塑性势和流动定律得弹塑性力学模型,在20世纪初就几经建立起来,这些理论已经在金属和泥土塑性领域得到了广泛的应用,并已经编成数值成形分析工具, 但塑性有限元发已经获得了广泛的应用。
描述超出线弹性范围的材料的塑性理论由三个重要概念组成:
1.屈服准则(Von Mises屈服准则;Mohr-Coulomb和Drucker prager准则)
2.流动准则
3.硬化准则
三、总结和展望
3.1 总结
通过运用计算机辅助造型及辅助工程的初步实践,以及与传统的设计制造过程的对比,切实体会到了数字化设计,制造的优越性,将CAD与CAE有机的结合,将大大缩短产品的研制周期,降低成本,有效地提高产品的市场竞争力。计算机辅助造型以及有限元法是随着计算机技术的应用而发展起来的一种先进的CAD/CAE技术,广泛应用于各个领域中的科学计算、设计、分析中,成功的解决了许多复杂的设计和分析问题,已成为工程设计和分析中的重要工具。此次设计中包含了某航天器零件的造型及薄板零件的压力成型分析,具有工程上的实际意义。了解了建模的几种方法和理论,以及有限元分析的基本理论,以便更好地理解造型及有限元方法在工程中的应用。通过这些方法的学习和使用,为以后更好地应用和实践计算机辅助工程打下坚实的基础。能够更加有效地更加快捷地对产品进行设计制造,降低产品研制成本,提高产品的市场竞争力,全面实现产品的数字化设计制造工程。
3.2 展望
产品的开发应用离不开工程设计人员、工程管理人员、计算机专业人员的大力配合,只有把设计工作的实际经验和计算机技术结合起来,才能提高系统的实用性和先进性。因此,应有计划地培养既懂专业又懂计算机的复合型人才,充实到设计队伍和管理队伍中去。
CAD技术的发展趋势主要体现在以下几方面∶
标准化
CAD软件一般应集成在一个异构的工作平台之上,只有依靠标准化技术才能解决CAD系统支持异构跨平台的环境问题。目前,除了CAD支撑软件逐步实现ISO标准和工业标准外,面向应用的标准零部件库、标准化设计方法已成为CAD系统中的必备内容,且向合理化工程设计的应用方向发展。
开放性
CAD系统目前广泛建立在开放式操作系统视窗95/98/2000/NT和UNIX平台上,为最终用户提供二次开发环境,甚至这类环境可开发其内核源码,使用户可定制自己的CAD系统。
集成化
CAD技术的集成化将体现在三个层次上∶其一是广义CAD功能,CAD/CAE/CAPP/CAM/CAQ/PDM/ERP经过多种集成形式,成为企业一体化解决方案。新产品设计能力与现代企业管理能力的集成,将成为企业信息化的重点;其二是将CAD技术采用的算法,甚至功能模块或系统,做成专用芯片,以提高CAD系统的使用效率;其三是CAD基于计算机网络环境实现异地、异构系统在企业间的集成。应运而生的虚拟设计、虚拟制造、虚拟企业就是该集成层次上的应用。例如,在美国通用汽车公司的生产过程,大量的零部件生产、装配都通过“虚拟工厂”、“动态企业联盟”的方式完成,本企业只负责产品总体设计和生产少数零部件,并最终完成产品的装配。
智能化
设计是一个含有高度智能的人类创造性活动领域,智能CAD是CAD发展的必然方向。从人类认识和思维的模型来看,现有的人工智能技术模拟人类的思维活动明显不足。因此,智能CAD不仅是简单地将现有的智能技术与CAD技术相结合,更重要的是深入研究人类设计的思维模型,最终用信息技术来表达和模拟它,才会产生高效的CAD系统,为人工智能领域提供新的理论和方法。CAD的这个发展趋势,将对信息科学的发展产生深刻的影响。
虚拟现实(VR)与CAD集成
VR技术在CAD中的应用面很广,首先可以进行各类具有沉浸感的可视化模拟,用以验证设计的正确性和可行性。例如用这种模拟技术进行设计分析,可以清楚地看到物体的变形过程和应力分布情况。其次它还可以在设计阶段模拟产品装配过程,检查所用零部件是否合适和正确。在概念设计阶段,它可用于方案优化。特别是利用VR的交互能力,支援概念设计中的人机工程学,检验操作时是否舒适、方便,这对摩托车、汽车、飞机等的设计作用尤其显著,在协同设计中,利用VR技术,设计群体可直接对所设计的产品进行交互。更加逼真地感知到正在和自己交互的全体成员的存在和相互间的活动。尽管VR技术在CAD中的应用前景诱人,不过离广泛推广应用还有一定距离。
CAE技术的发展趋势将体现在以下几方面∶
真三维图形处理与虚拟现实
随着专用於图形和多媒体信息处理的高性能DSP芯片的发展,PC机的图形处理能力近两年会有成百倍的提高,再加上三维图形算法、图形运算和参数化建模算法的发展,快速真三维的虚拟现实技术将会成熟。因此CAE软件的前后处理系统将会在复杂的三维实体建模及相关的静态和动态图形处理技术方面有新的发展,例如复杂的三维实体建模及相应的自适应有限元剖分,复杂的动态物理场的虚拟现实与即时提示等。
面向对象的工程数据库及其管理系统
高性能价格比的大容量存贮器及其高速存取技术在迅速发展,PC机的硬盘容量很快将由GB量级达到TB量级,用户将要求把更多的计算模型、设计方案、标准规范和知识性信息纳入CAE软件的数据库中,这必将推动CAE软件数据库及其数据管理技术的发展,高性能的面向对象的工程数据库及管理系统将会出现在新一代的CAE软件中。
多相多态介质耦合、多物理场耦合以及多尺度耦合分析 目前的CAE软件,都仅限与宏观物理、力学模型的工程和产品分析,虽然有少数软件涉足了微机电系统分析,但其物理力学模型尚存在一定问题。值得指出的是∶对于多物理场的强耦合问题、多相多态介质耦合问题,特别是多尺度模型的耦合问题,目前尚处于基础性前沿研究阶段。但是,它们已成为国内外科学家的重点研究课题,由于其强烈的工业背景,基础研究的任何突破,都会被迅速纳入CAE软件,不久的将来,将形成从材料性能的预测、仿真,到构件与整个产品性能的预测、仿真,集计算机辅助材料设计制备,到工程或产品的设计、仿真与优化於一体的新一代CAE系统。
适应于超级并行计算机和机群的高性能CAE求解技术CAD/CAE/CAM已成为技术人员实施技术创新的得力工具,每秒千亿次、万亿次、千万亿次及量子计算机即将诞生,分布式并行计算机群即将投入使用,为适应这种情况,新型的高精度和高效率并行算法正被研究,一些实用的新算法将不断问世。这些新的高性能算法必然会被做成CAE的软件模块,使其在对复杂的工程或产品仿真时,能够充分发挥超级并行计算系统的软、硬件资源,高效率和高精度地获得计算结果。
GUI+多媒体的用户介面
伴随着计算机图形用户介面(GUI)和联机共用的图形与数据库软件的发展,狭义的语音输入/输出已成现实,计算机视觉系统很快能在一定范围内分析体态、眼神和手势,不久的将来会听、看、说、写和学习的计算机将问世,这些多媒体技术一定会使未来CAD/CAE/CAM软件的用户介面具有更强的直观、直感和直觉性, CAE软件将来不仅具有常见的弹出式下拉菜单,对话框、工具杆和多种数据导入的宏命令,还要开发若干专用的智能用户介面,帮助用户选择单元形态,分析流程,判断分析结果等,使某些专业用户使用CAE软件,就像使用“傻瓜”相机一样,具有一按即得的功效。
此次设计中包含了某航天器零件的造型及薄板零件的压力成型分析,具有工程上的实际意义。在三维设计中,设计了一个尾喷管,一个舵,还有一个机翼,其中尾喷管由四部分组成,包括内部的支撑部分,和外部的蒙皮部分。舵和机翼都是由两个以上的蒙皮表面构成。在有限元分析中,包括金属薄板的弹塑性分析,以及舵面的弹塑性分析, 其中还对薄板进行了超塑性分析。
一、引言
为了满足航天产品多品种,小批量研制生产的需要,采用计算机辅助设计制造,实现并行工程,敏捷制造,柔性生产,成为加快我国航天制造技术的发展的有效方法。
传统的航天零件产品设计、模具设计及加工都是根据二维工程图样来完成的,加工出的产品数据精度不高,往往要不断的修改产品设计,不断的修改模具,所以,它的研发周长、成本高;采用最新的CAD/CAE/CAM——Pro/Engineer软件来实现三维设计,可以大大缩短产品研发周期、模具设计周期和加工周期,提高了产品设计的准确性,大大降低产品开发、模具设计成本。由于其功能强大,模块众多,使用者要具备较高的操作技巧和较丰富的应用经验才能熟练地进行建模。这对于普通的设计人员而言,使用Pro/E提供的实体建模模块进行3D造型设计并非易事,需要设计人员花大量的时问和精力来熟悉Pro/E的建模技术和掌握一定的技巧。
在竞争激烈的市场环境中,为取得竞争优势,企业迫切需要能够迅速开发出高质量、低成本的产品,并迅速抢占市场。因此企业界迫切需要高技术、高速度、低成本的设计方法。随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法,有限元在产品设计和研制中所显示出的无可伦比的优越性,使其成为企业在市场竞争中制胜的一个重要工具。
1.1 国内本领域的现状
目前在我国计算机辅助设计(CAD),计算机辅助工程(CAE)已经得到了广泛的应用,在大多数的大型制造企业已经相当的成熟。如果让我们调查一下国内企业中CAD的应用,会得出如下结论,很多所谓CAD应用很好的企业,也只是做到用手工出图转变为计算机出图的现状,当然计算机出图是有很多优点的,漂亮、规范、修改容易、存档方便等。但是如果我们只是停留在这个阶段,就失去了CAD的作用,因为CAD是辅助设计,不是辅助绘图。既然是设计就不但想到产品的机械模型,还应想到产品的结构分析、运动机构分析和生产加工处理等,只有这样才能真正发挥CAD的作用。如果真正做到这一点,单凭二维设计是不够的,虽然传统的制图方法是通过二维视图来描述三维实体,但这种描述做不到进一步的结构分析、运动机构分析和数控加工,不能真正做到生产的自动化,更有甚者,二维视图的描述经常出现二意性和理解错误,因为人们只是按着一些规定在想象三维的模样,限于这种描述方法的缺陷,必须找到更先进的、更合理的三维设计手段,使CAD、CAM、CAE以及PDM容为一体。当然这个目标要有一个过程,但现在我们必须明确。
1.2 主要内容
此次设计中包含了某航天器零件的造型及薄板零件的压力成型分析,具有工程上的实际意义。介绍了建模的几种方法和理论,以及有限元分析的基本理论。在三维设计中,设计了一个尾喷管,一个舵,还有一个机翼,其中尾喷管由四部分组成,包括内部的支撑部分,和外部的蒙皮部分。舵和机翼都是由两个以上的蒙皮表面构成。在有限元分析中,包括金属薄板的弹塑性分析,以及舵面的弹塑性分析, 其中还对薄板进行了超塑性分析。
二、某航天器零件的CAD造型与有限元分析
2.1 Pro/E软件简介
Pro/E软件抛弃传统CAD 软件中的线框和表面模型而直接鉴于3D 实体。使设计环境完全从2D或2D与3D混合状态上升为纯3D 模式,在此最直观的3D 的设计环境中,设计者能更好的捕捉自己的设计意图和激发设计灵感。
Pro/E 的3D 实体鉴于特征造型技术。在Pro/E 中,所面向的对象包括几何特征、非几何特征、零件模型、装配模型、模具模型、加工模型等等,设计人员通过对这些对象所具有的内在属性、存在方式和存在状态的准确把握来得到理想中的模型。
Pro/E中所有的对象都是建立在单一数据库中。并且此数据库是唯一的、完整的,因而保证了在Pro/E中进行的任何设计也都是全相关的。在整个设计过程中的任何一处发生参数改动,可以反应到整个设计过程中的相关环节上。设计师可以依靠此功能完全抛弃传统的工作方法,实现零件设计、模具设计、装配设计、加工设计等过程同时进行。
Pro/E的3D 特征实体是全参数化的,具有自适应性和智能性。通过完备而准确的参数和资料来驱动实体,产品模型的每一个设计尺寸都对应一个参数,设计人员可以通过命令或者关系式的形式来建立各参数之间的关系,以得到所要求设计的模型。
2.2 某航天器零件的CAD造型
在实体造型的过程中,要根据二维图纸上的尺寸来进行设计,有一些复杂曲线在pro/E中要灵活对待,也许不同的人对设计同一个零件要花费的时间会相差很大,这就是在绘制图形的时候所用到的方法不同而导致的。比如一个不同截面的实体用可变截面扫描的方法会最省时间,再比如一个简单的立方体可以用扫描的方法,也可以用拉伸的方法,一块薄板周围有一些不同角度的翘板,考虑是在标准模式下造型还是在板金模式下造型。
2.3 Marc软件简介
此次讨论就是依据某航天器几个零件的二维图纸在Pro/E软件环境中进行三维造型设计,造型完毕后利用MSC/Marc有限元分析软件对零件的成型过程进行模拟分析,初步了解零件在加工之前的应变过程及状态,以及零件的受力、受热情况,提供一些零件的重要性能参数。
Msc.Marc/Mentat是国际上通用最先进非线性有限元软件,它是MSC.Software coorperation(简称MSC)公司的产品。MSC.Mentat是新一代非线性有限元分析的前后处理图形交互界面。前者严密整合MSC.Marc和MSC.Mentat成为解决复杂工程问题,完成学术研究的高级通用有限元软件。
2.3.1 MSC.Mentat
MSC.Mentat是新一代非线形有限元分析的前后处理交互界面,与MSC.Marc求解器无缝连接。它具有以ACIS为内核的一流实体造型功能;全自动二维三角形和四边形,三维四面体和六面体网格自动划分建模能力;直观灵活的多种材料模型定义和边界条件的定义功能;分析过程控制定义和递交分析,自动检查分析模型完整性的功能;实时监控分析能力;方便的可视化处理计算结果能力;先进的光照,渲染,动画和电影制作等图形功能并可直接访问常用的CAD/CAE系统,如:ACIS,AutoCAD,C-MOLD,IGES,MSC.Nastran, MSC.Patran IDEAS,VDAFS,STL等等。
2.3.2 MSC.Marc
MSC.Marc是功能齐全的高级非线性有限元软件的求解器,它体现了30多年来有限元分析的理论方法和软件的完美结合。他具有极强的结构分析没能力。可以处理各种线性和非线性结构分析。它提供了丰富的机构单元,连接单元和特殊单元的单元库。MSC,Marc的机构分析材料库提供了模拟金属,非金属,聚合物,岩土,复合材料等多种线性和非线性问题的求解技术。为了进一步提高计算精度和分析效率,MSC.Marc软件提供了多种功能强大的加载步长自适应控制技术,自动确定分析加载步长。MSC.Marc卓越的网格自适应技术,以多种误差准则自动调节网格疏密,即保证了计算精度,同时也使非线性分析的计算效率大大提高。此外,MSC.Marc支持全自动网格重划,用以纠正过度变形产生的网格畸变,确保大变形分析的继续进行。
计算机辅助造型以及有限元法是随着计算机技术的应用而发展起来的一种先进的CAD/CAE技术,广泛应用于各个领域中的科学计算、设计、分析中,成功的解决了许多复杂的设计和分析问题,已成为工程设计和分析中的重要工具。
此次设计中包含了某航天器零件的造型及薄板零件的压力成型分析,具有工程上的实际意义。在三维设计中,设计了一个尾喷管,一个舵,还有一个机翼,其中尾喷管由四部分组成,包括内部的支撑部分,和外部的蒙皮部分。舵和机翼都是由两个以上的蒙皮表面构成。在有限元分析中,包括金属薄板的弹塑性分析,以及舵面的弹塑性分析, 其中还对薄板进行了超塑性分析。
2.4 有限元分析在工程上的应用
目前,有限元法在机械工程上的应用主要有以下几个方面:
静力学分析:这是对二维或三维的机械结构承载后的应力、应变和变形分析,是有限元法在机械工程中最基本、最常用的分析类型。当作用在结构上的载荷不随时间变化或随时何的变化十分缓慢,应进行静力学分析。
模态分析:这是动力学分析的一种,用于研究结构的固有频率和自振型式等振动特性。进行这种分析时所施加的载荷只能是位移载荷和预应力载荷。
谐响应分析和瞬态动力学分析:这两类分析也属动力学分析,用于研究结构对周期载荷和非周期载荷的动态响应。
热应力分析:这类分析用于研究、结构的工作温度不等于安装温度时,或工作时结构内部存在温度分布时,结构内部的温度应力。
接触分析:这是一种状态非线性分析,用于分析2个结构物发生接触时的接触面状态、法向力等。由于机械结构中结构与结构间力的传递均是通过接触来实现的,所以有限元法在机械结构中的应用很多都是接触分析。但是,以前受计算能力的制约,接触分析应用的较少。
屈曲分析:这是一种几何非线性分析,用于确定结构开始变得不稳定时的临界载荷和屈曲模态形状,例如压杆稳定性问题。
在竞争激烈的市场环境中,为取得竞争优势,企业迫切需要能够迅速开发出高质量、低成本的产品,并迅速抢占市场。因此企业界迫切需要高技术、高速度、低成本的设计方法。随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法,有限元在产品设计和研制中所显示出的无可伦比的优越性,使其成为企业在市场竞争中制胜的一个重要工具。
2.5 有限元法分析的基本步骤
物体离散化。将分析的对象离散为有限个单元,单元的数量根据需要和计算精度而定。一般情况下,单元划分越细则描述变形情况越精确,越接近实际变形,但计算量越大。
单元特性分析。首先进行位移模式选择。有限元法通常采用位移法,因此应先选择合理的位移模式(位移函数) 。然后分析单元的力学性质。根据单元的材料性质、形状、尺寸、节点数目、位置及其含义,找出单元节点力和节点位移的关系式,亦即导出单元刚度矩阵,这是分析中的关键一步。最后计算等效节点力。将单元边界上的表面力、体积力或集中力等效地转移到节点上,也就是用等效的节点力来代替所有作用在单元上的力。
单元组集。利用结构力的平衡条件和边界条件把各个单元按原来的结构重新联结起来,形成整体刚度矩阵。
求解未知节点位移。解有限元方程求出节点位移,然后根据节点位移求出所有的未知量。归根到底,有限元法是求解常,偏微分方程的一种方法。理论上讲,凡能够归纳为求解微分方程的工程问题都可以用有限元法来解决。因此有限元法可以进行结构、热、电磁、流体、声学等分析。
本次讨论主要进行弹塑性分析。弹塑性是最常见,被研究得最透彻的材料非线性行为。采用屈服面,塑性势和流动定律得弹塑性力学模型,在20世纪初就几经建立起来,这些理论已经在金属和泥土塑性领域得到了广泛的应用,并已经编成数值成形分析工具, 但塑性有限元发已经获得了广泛的应用。
描述超出线弹性范围的材料的塑性理论由三个重要概念组成:
1.屈服准则(Von Mises屈服准则;Mohr-Coulomb和Drucker prager准则)
2.流动准则
3.硬化准则
三、总结和展望
3.1 总结
通过运用计算机辅助造型及辅助工程的初步实践,以及与传统的设计制造过程的对比,切实体会到了数字化设计,制造的优越性,将CAD与CAE有机的结合,将大大缩短产品的研制周期,降低成本,有效地提高产品的市场竞争力。计算机辅助造型以及有限元法是随着计算机技术的应用而发展起来的一种先进的CAD/CAE技术,广泛应用于各个领域中的科学计算、设计、分析中,成功的解决了许多复杂的设计和分析问题,已成为工程设计和分析中的重要工具。此次设计中包含了某航天器零件的造型及薄板零件的压力成型分析,具有工程上的实际意义。了解了建模的几种方法和理论,以及有限元分析的基本理论,以便更好地理解造型及有限元方法在工程中的应用。通过这些方法的学习和使用,为以后更好地应用和实践计算机辅助工程打下坚实的基础。能够更加有效地更加快捷地对产品进行设计制造,降低产品研制成本,提高产品的市场竞争力,全面实现产品的数字化设计制造工程。
3.2 展望
产品的开发应用离不开工程设计人员、工程管理人员、计算机专业人员的大力配合,只有把设计工作的实际经验和计算机技术结合起来,才能提高系统的实用性和先进性。因此,应有计划地培养既懂专业又懂计算机的复合型人才,充实到设计队伍和管理队伍中去。
CAD技术的发展趋势主要体现在以下几方面∶
标准化
CAD软件一般应集成在一个异构的工作平台之上,只有依靠标准化技术才能解决CAD系统支持异构跨平台的环境问题。目前,除了CAD支撑软件逐步实现ISO标准和工业标准外,面向应用的标准零部件库、标准化设计方法已成为CAD系统中的必备内容,且向合理化工程设计的应用方向发展。
开放性
CAD系统目前广泛建立在开放式操作系统视窗95/98/2000/NT和UNIX平台上,为最终用户提供二次开发环境,甚至这类环境可开发其内核源码,使用户可定制自己的CAD系统。
集成化
CAD技术的集成化将体现在三个层次上∶其一是广义CAD功能,CAD/CAE/CAPP/CAM/CAQ/PDM/ERP经过多种集成形式,成为企业一体化解决方案。新产品设计能力与现代企业管理能力的集成,将成为企业信息化的重点;其二是将CAD技术采用的算法,甚至功能模块或系统,做成专用芯片,以提高CAD系统的使用效率;其三是CAD基于计算机网络环境实现异地、异构系统在企业间的集成。应运而生的虚拟设计、虚拟制造、虚拟企业就是该集成层次上的应用。例如,在美国通用汽车公司的生产过程,大量的零部件生产、装配都通过“虚拟工厂”、“动态企业联盟”的方式完成,本企业只负责产品总体设计和生产少数零部件,并最终完成产品的装配。
智能化
设计是一个含有高度智能的人类创造性活动领域,智能CAD是CAD发展的必然方向。从人类认识和思维的模型来看,现有的人工智能技术模拟人类的思维活动明显不足。因此,智能CAD不仅是简单地将现有的智能技术与CAD技术相结合,更重要的是深入研究人类设计的思维模型,最终用信息技术来表达和模拟它,才会产生高效的CAD系统,为人工智能领域提供新的理论和方法。CAD的这个发展趋势,将对信息科学的发展产生深刻的影响。
虚拟现实(VR)与CAD集成
VR技术在CAD中的应用面很广,首先可以进行各类具有沉浸感的可视化模拟,用以验证设计的正确性和可行性。例如用这种模拟技术进行设计分析,可以清楚地看到物体的变形过程和应力分布情况。其次它还可以在设计阶段模拟产品装配过程,检查所用零部件是否合适和正确。在概念设计阶段,它可用于方案优化。特别是利用VR的交互能力,支援概念设计中的人机工程学,检验操作时是否舒适、方便,这对摩托车、汽车、飞机等的设计作用尤其显著,在协同设计中,利用VR技术,设计群体可直接对所设计的产品进行交互。更加逼真地感知到正在和自己交互的全体成员的存在和相互间的活动。尽管VR技术在CAD中的应用前景诱人,不过离广泛推广应用还有一定距离。
CAE技术的发展趋势将体现在以下几方面∶
真三维图形处理与虚拟现实
随着专用於图形和多媒体信息处理的高性能DSP芯片的发展,PC机的图形处理能力近两年会有成百倍的提高,再加上三维图形算法、图形运算和参数化建模算法的发展,快速真三维的虚拟现实技术将会成熟。因此CAE软件的前后处理系统将会在复杂的三维实体建模及相关的静态和动态图形处理技术方面有新的发展,例如复杂的三维实体建模及相应的自适应有限元剖分,复杂的动态物理场的虚拟现实与即时提示等。
面向对象的工程数据库及其管理系统
高性能价格比的大容量存贮器及其高速存取技术在迅速发展,PC机的硬盘容量很快将由GB量级达到TB量级,用户将要求把更多的计算模型、设计方案、标准规范和知识性信息纳入CAE软件的数据库中,这必将推动CAE软件数据库及其数据管理技术的发展,高性能的面向对象的工程数据库及管理系统将会出现在新一代的CAE软件中。
多相多态介质耦合、多物理场耦合以及多尺度耦合分析 目前的CAE软件,都仅限与宏观物理、力学模型的工程和产品分析,虽然有少数软件涉足了微机电系统分析,但其物理力学模型尚存在一定问题。值得指出的是∶对于多物理场的强耦合问题、多相多态介质耦合问题,特别是多尺度模型的耦合问题,目前尚处于基础性前沿研究阶段。但是,它们已成为国内外科学家的重点研究课题,由于其强烈的工业背景,基础研究的任何突破,都会被迅速纳入CAE软件,不久的将来,将形成从材料性能的预测、仿真,到构件与整个产品性能的预测、仿真,集计算机辅助材料设计制备,到工程或产品的设计、仿真与优化於一体的新一代CAE系统。
适应于超级并行计算机和机群的高性能CAE求解技术CAD/CAE/CAM已成为技术人员实施技术创新的得力工具,每秒千亿次、万亿次、千万亿次及量子计算机即将诞生,分布式并行计算机群即将投入使用,为适应这种情况,新型的高精度和高效率并行算法正被研究,一些实用的新算法将不断问世。这些新的高性能算法必然会被做成CAE的软件模块,使其在对复杂的工程或产品仿真时,能够充分发挥超级并行计算系统的软、硬件资源,高效率和高精度地获得计算结果。
GUI+多媒体的用户介面
伴随着计算机图形用户介面(GUI)和联机共用的图形与数据库软件的发展,狭义的语音输入/输出已成现实,计算机视觉系统很快能在一定范围内分析体态、眼神和手势,不久的将来会听、看、说、写和学习的计算机将问世,这些多媒体技术一定会使未来CAD/CAE/CAM软件的用户介面具有更强的直观、直感和直觉性, CAE软件将来不仅具有常见的弹出式下拉菜单,对话框、工具杆和多种数据导入的宏命令,还要开发若干专用的智能用户介面,帮助用户选择单元形态,分析流程,判断分析结果等,使某些专业用户使用CAE软件,就像使用“傻瓜”相机一样,具有一按即得的功效。
2007年12月19日星期三
前端与后端
“也有些公司并不看好前端CFD的前景,一些专业CAE公司认为,未来人们更多需要的是模拟仿真驱动的设计,而这种设计需要单一的CAE模型。这种说法看似有道理,但要知道单一的CAE模型和CAD模型并不是一回事。对于分工明确且拥有专业CAE团队的公司来说,这种方法是有效的;而对于另一些拥有庞大的从事多任务处理的工程师团队、使用MCAD软件的公司来说,却没什么用处,对于他们而言,CFD的真正价值在于将其带入产品开发过程的前端,在花费很小的情况下对设计基础进行试验。”
我的理解或许是
前端 快速实际应用开发 要求专业化程度高 前后处理功能强大 集成性好
后端 概念成形理论研究 要求精度高 有最新的技术融入 通用化程度高
或许以后的CAE市场格局将会从传统的通用CAE软件中裂变出来,市场分层将会明显
我的理解或许是
前端 快速实际应用开发 要求专业化程度高 前后处理功能强大 集成性好
后端 概念成形理论研究 要求精度高 有最新的技术融入 通用化程度高
或许以后的CAE市场格局将会从传统的通用CAE软件中裂变出来,市场分层将会明显
2007年12月13日星期四
2007年12月11日星期二
Snow on the Sahara

When you wander off out there
To those hills of dust and hard winds that blow
In that dry white ocean alone
Lose out in the desert
Ou are lost out in the desert
But to stand with you in a ring of fire
Ill forget the days gone by
Ill protect your body and guard your soul
From mirages in your sight
Lost out in the desert
You are lost out in the desert
If your hopes scatter like the dust across your track
Ill be the moon that shines on your path
The sun may blind our eyes, Ill pray the skies above
For snow to fall on the sahara
Just a wish and I will cover your shoulders
With veils of silk and gold
When the shadows come and darken your heart
Leaving you with regrets so cold
Lost out in the desert
You are lost out in the desert
If your hopes scatter like the dust across your track
Ill be the moon that shines on your path
The sun may blind our eyes, Ill pray the skies above
For snow to fall on the sahara
If thats the only place where you can leave your doubts
Ill hold you up and be your way out
And if we burn away, Ill pray the skies above
For snow to fall on the sahara
2007年12月1日星期六
显式和隐式两个时间积分
为了确定单元内力,两种算法都求解节点加速度,区别在于计算节点加速度的方式。隐式用直接法求解一系列的线性方程组。 而显式算法采用集中质量的方法使质量矩阵对角化,这样不需经过迭代即可求解相互独立的多个方程。并且采用中心差分法对时间进行离散化,即假定加速度为常数以求得速度的变化,用这个速度的变化值加上前一个时间段中点的速度来确定当前时间段的中点速度:速度沿时间积分的结果加上此时间段开始时的位移,确定了时间段结束时的位移。
这样,在时间段开始时,提供了满足动力学平衡条件的加速度。知道了加速度,通过对时间的“显式”求解,可以进一步求出速度和位移。所谓的“显式”是指时间段结束时的形态仅取决于此时间段开始时的位移、速度和加速度。为了得到精确的结果,时间增量段必须分得足够小以保证加速度在时间段中近似为常数,一般的分析需要成千上万个时间段。但由于不必同时求解联立方程,每一个增量计算成本较低,大部分的计算机资源消耗在计算确定作用在节点上的单元内力。
简单的说,显式方法每一步计算都产生新的刚阵,比较费时,但是上述问题每一步的刚阵可能都差别比较大,所以有必要形成新的刚阵。对于其他力学问题,比如小变形问题,当然不必回回形成新的刚阵,所以都用隐式算法。
当前时刻的位移只与前一时刻的加速度和位移有关,这就意味着当前时刻的位移求解无需迭代过程。另外,只要将运动方程中的质量矩阵和阻尼矩阵对角化,前一时刻的加速度求解无需解联立方程组,从而使问题大大简化,这就是所谓的显式求解法。显式求解法的优点是它即没有收敛性问题,也不需求解联立方程组,其缺点是时间步长受到数值积分稳定性的限制,不能超过系统的临界时间步长。由于冲压成型过程具有很强的非线性,从解的精度考虑,时间步长也不能太大,这就在很大程度上弥补了显式求解法的缺陷。 在80年代中期以前显式算法主要用于高速碰撞的仿真计算,效果很好。自80年代后期被越来越广泛地用于冲压成型过程的仿真,目前在这方面的应用效果已超过隐式算法。显式算法在冲压成型过程的仿真中获得成功应用的关键,在于它不像隐式算法那样有解的收敛性问题。
这样,在时间段开始时,提供了满足动力学平衡条件的加速度。知道了加速度,通过对时间的“显式”求解,可以进一步求出速度和位移。所谓的“显式”是指时间段结束时的形态仅取决于此时间段开始时的位移、速度和加速度。为了得到精确的结果,时间增量段必须分得足够小以保证加速度在时间段中近似为常数,一般的分析需要成千上万个时间段。但由于不必同时求解联立方程,每一个增量计算成本较低,大部分的计算机资源消耗在计算确定作用在节点上的单元内力。
简单的说,显式方法每一步计算都产生新的刚阵,比较费时,但是上述问题每一步的刚阵可能都差别比较大,所以有必要形成新的刚阵。对于其他力学问题,比如小变形问题,当然不必回回形成新的刚阵,所以都用隐式算法。
当前时刻的位移只与前一时刻的加速度和位移有关,这就意味着当前时刻的位移求解无需迭代过程。另外,只要将运动方程中的质量矩阵和阻尼矩阵对角化,前一时刻的加速度求解无需解联立方程组,从而使问题大大简化,这就是所谓的显式求解法。显式求解法的优点是它即没有收敛性问题,也不需求解联立方程组,其缺点是时间步长受到数值积分稳定性的限制,不能超过系统的临界时间步长。由于冲压成型过程具有很强的非线性,从解的精度考虑,时间步长也不能太大,这就在很大程度上弥补了显式求解法的缺陷。 在80年代中期以前显式算法主要用于高速碰撞的仿真计算,效果很好。自80年代后期被越来越广泛地用于冲压成型过程的仿真,目前在这方面的应用效果已超过隐式算法。显式算法在冲压成型过程的仿真中获得成功应用的关键,在于它不像隐式算法那样有解的收敛性问题。
2007年11月27日星期二
toy soldiers

Step by step ,heart to heart ,left right left
We all fall down like toy soldiers
It wasn't my intention to mislead you
It never should have been this way
What can I say
It's true I did extent the invitation
I never knew how long you'd stay
When you hear temptation call
It's your heart that takes ,takes a fall
Won't you come out and play with me
Step by step ,heart to heart ,left right left
We all fall down like toy soldiers
But the battle wages on for toy soldiers
It's getting hard to wake up in the morning
My head is spinning constantly
How can it be
How could I be so blind to this addiction
If I don't stop the next one's gonna be me
Only emptiness remains
It replaces all ,all the pain
Won't you come out and play with me
Step by step ,heart to heart ,left right left
We all fall down like toy soldiers
It wasn't my intention to mislead you
It never should have been this way
What can I say
It's true I did extent the invitation
I never knew how long you'd stay
When you hear temptation call
It's your heart that takes ,takes a fall
Won't you come out and play with me
Step by step ,heart to heart ,left right left
We all fall down like toy soldiers
But the battle wages on for toy soldiers
It's getting hard to wake up in the morning
My head is spinning constantly
How can it be
How could I be so blind to this addiction
If I don't stop the next one's gonna be me
Only emptiness remains
It replaces all ,all the pain
Won't you come out and play with me
Step by step ,heart to heart ,left right left
2007年11月18日星期日
2007年11月15日星期四
2007年11月8日星期四
2007年10月31日星期三
订阅:
博文 (Atom)